Carbon Metabolic Pathways in Phototrophic Bacteria and Their Broader Evolutionary Implications

نویسندگان

  • Kuo-Hsiang Tang
  • Yinjie J. Tang
  • Robert Eugene Blankenship
چکیده

Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-based metabolomics and fluxomics

Photosynthesis is the process to convert solar energy to biomass and biofuels, which are the only major solar energy storage means on Earth. To satisfy the increased demand for sustainable energy sources, it is essential to understand the process of solar energy storage, that is, the carbon metabolism in photosynthetic organisms. It has been well-recognized that one bottleneck of photosynthesis...

متن کامل

Aerobic anoxygenic phototrophic bacteria.

The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids...

متن کامل

The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus.

Despite the fact that heliobacteria are the only phototrophic representatives of the bacterial phylum Firmicutes, genomic analyses of these organisms have yet to be reported. Here we describe the complete sequence and analysis of the genome of Heliobacterium modesticaldum, a thermophilic species belonging to this unique group of phototrophs. The genome is a single 3.1-Mb circular chromosome con...

متن کامل

Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria.

The coenzyme A (CoA)-activated C5-dicarboxylic acids mesaconyl-CoA and beta-methylmalyl-CoA play roles in two as yet not completely resolved central carbon metabolic pathways in bacteria. First, these compounds are intermediates in the 3-hydroxypropionate cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium. Second, mesaconyl-CoA and beta-meth...

متن کامل

Close Interspecies Interactions between Prokaryotes from Sulfureous Environments

Green sulfur bacteria are obligate photolithoautotrophs that require highly reducing conditions for growth and can utilize only a very limited number of carbon substrates. These bacteria thus inhabit a very narrow ecologic niche. However, several green sulfur bacteria have overcome the limits of immobility by entering into a symbiosis with motile Betaproteobacteria in a type of multicellular as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011